Chuyển đến nội dung chính

Kiểm tra và điều chỉnh Xupap động cơ Diesel bằng đồng hồ so

 Viết bài: Thanh Sơn, bản quyền thuộc www.baoduongcokhi.com

Động cơ diesel

Động cơ Diesel, hay còn được gọi là động cơ nén cháy (compression-ignition) hoặc động cơ CI, được đặt theo tên của Rudolf Diesel. Nó là một loại động cơ đốt trong, trong đó nhiên liệu được đánh lửa bằng nhiệt độ cao của không khí trong xi lanh do quá trình nén cơ học (nén đoạn nhiệt). Điều này khác với các động cơ đánh lửa như động cơ xăng hoặc động cơ ga (sử dụng nhiên liệu khí) sử dụng bộ đánh lửa để châm ngòi đốt cháy hỗn hợp nhiên liệu-không khí.

Động cơ diesel hoạt động bằng cách chỉ nén không khí, tạo ra nhiệt độ bên trong xi lanh cao đến mức khiến cho nhiên liệu diesel phun vào tự bốc cháy. Do nhiên liệu được phun vào ngay trước khi đốt, nó được phân tán không đồng đều, gọi là hỗn hợp nhiên liệu-không khí không đồng nhất. Điều khiển mô-men xoắn của động cơ diesel thường được thực hiện bằng cách điều chỉnh tỷ lệ nhiên liệu-không khí, thay vì điều tiết lượng khí nạp vào. Việc thay đổi lượng nhiên liệu được phun và tỷ lệ nhiên liệu-không khí thường được áp dụng để điều khiển mô-men xoắn và tỷ lệ nhiên liệu-không khí thường cao trong động cơ diesel.

Chu kỳ của động cơ diesel

Kỳ nạp: Hút không khí vào xylanh

Pit-tông sẽ chuyển động từ Điểm chết trên (DCT) xuống Điểm chết dưới (DCD), tương ứng với trục khuỷu quay một góc từ 0-180 độ.

Thể tích trong xylanh tăng lên, áp suất giảm từ từ cho đến khi nhỏ hơn áp suất khí quyển.

Xupap nạp dưới tác động của cơ cấu phân phối khí sẽ mở ra (trong khi đó, xupap xả vẫn đóng).

Do áp suất bên trong xilanh động cơ nhỏ hơn áp suất bên ngoài nên không khí vẫn được nạp vào xylanh.

Kỳ nén: Nén không khí đạt áp suất & nhiệt độ cao

Pit-tong chuyển từ ĐCD đến ĐCT, tương ứng với trục khuỷu quay 1 góc 180 - 360 độ.

Xupap nạp & Xupap xả đã được đóng lại, không khí trong xilanh cũng nén. Thể tích trong xilanh giảm & áp suất bắt đầu tăng dần lên.

Khi pit-tong cách DCT tương ứng góc quay trục khuỷu khoảng 15-30 độ thì vòi phun sẽ phun nhiên liệu vào dưới dạng sương mù, trộn đều với không khí nén, tạo thành hỗn hợp đốt & tự bốc cháy dưới áp suất & nhiệt độ cao.

Kỳ sinh công: Sinh năng lượng

Nhiên liệu phun vào buồng đốt, trộn với không khí được nén ở áp suất & nhiệt độ cao tự bốc cháy. Hỗn hợp cháy giãn nở sinh công cho động cơ.

Kỳ xả: Xả khí thải ra ngoài

Pit-tong chuyển động từ DCD đến DCT. Ở quá trình này, xupap nạp vẫn đóng nhưng xupap xả mở ra, Pit-tong đẩy khí đã làm việc ra ngoài.

Các định nghĩa

Trước khi đi vào cách điều chỉnh, chúng ta đi tìm hiểu các thuật ngữ sẽ sử dụng:

Hiệu chuẩn Xupap (calibration): Quy trình được sử dụng trong động cơ đốt trong và nhằm đảm bảo rằng van động cơ đóng hoàn toàn khi đạt đến mức giãn nở nhiệt của vật liệu. Phép đo này được xác định bởi nhà sản xuất thiết bị và phải được kiểm tra định kỳ. Đây là một nhiệm vụ theo yêu cầu của chương trình bảo trì và được thực hiện sau mỗi số giờ hoạt động nhất định hoặc trong trường hợp tháo rời các bộ phận liên quan.

Phương pháp phổ biến nhất được sử dụng trên động cơ đốt trong là điều chỉnh bằng vít - đai ốc khóa (screw-locknut).

Các Xupap nắp xy lanh động cơ diesel (Diesel engine head valves): Các bộ phận cơ khí cho phép không khí đi vào buồng đốt (van hút) và các khí sinh ra từ quá trình đốt cháy (van xả) thoát ra ngoài.

Điểm chết trên - TDC: Từ viết tắt bằng tiếng Anh, Top Dead Center, và đề cập đến thời điểm quay của trục khuỷu (Crankshaft) và cụm pít-tông-thanh truyền (Connecting rod) của nó, trong đó chuyển động tịnh tiến của nó đạt đến điểm cao nhất và thay đổi hướng.

Điểm chết dưới - BDC (Bottom Dead Center): Điểm chết dưới, là vị trí đối diện với điểm chết trên và là thời điểm mà pít-tông động cơ đi đến phần thấp nhất của hành trình trong xi-lanh để bắt đầu chuyển động đi lên (về phía điểm chết trên).

Nắp xy lanh (Head): Bộ phận cấu thành phần trên của động cơ và quyết định một trong những giới hạn hình thành nên buồng đốt. Nó được tạo thành từ các van, cò mổ, kim phun nhiên liệu và ống dẫn bôi trơn, trong số những thứ khác.

Chu kỳ làm việc của động cơ Diesel (Diesel Engine Cycle): Chu kỳ làm việc của động cơ đốt trong hiện nay thường hoạt động với nguyên lý chu kỳ tuần hoàn với 4 bước làm việc là: Hút, nén, nổ và xả.

Đồng bộ động cơ (Engine synchronization): Là trạng thái do nhà sản xuất xác định và quy định hoạt động chính xác của nó. Nó phải luôn được giữ nguyên như ban đầu để các công việc liên quan không bị sai sót.

Nói thêm:

Engine synchronization là quá trình đồng bộ hoá các bộ phận chính của động cơ để đảm bảo hoạt động chính xác và ổn định của động cơ. Điều này bao gồm đồng bộ hoá thời gian nổ của động cơ, đánh lửa và phun nhiên liệu. Khi các bộ phận trong động cơ không được đồng bộ hóa đúng cách, động cơ có thể hoạt động kém hiệu quả, tiêu thụ nhiên liệu cao hơn và có thể gây ra các vấn đề khác.

Trong quá trình đồng bộ hóa động cơ, các bộ phận chính của động cơ như piston, van, trục khuỷu và trục cam sẽ được đồng bộ hóa để đảm bảo chúng hoạt động cùng một thời điểm và tương thích với các bộ phận khác. Việc đồng bộ hoá thời gian nổ, đánh lửa và phun nhiên liệu cũng được thực hiện để đảm bảo rằng các quá trình này xảy ra đúng thời điểm và trong một thứ tự nhất định để tối ưu hóa hiệu suất và tiết kiệm nhiên liệu.

Việc đồng bộ hoá động cơ là rất quan trọng để đảm bảo hoạt động chính xác và ổn định của động cơ, đặc biệt là đối với các động cơ lớn và các ứng dụng đòi hỏi độ chính xác cao như trong các ứng dụng công nghiệp hoặc động cơ phản lực.

 

Trục cam (Camshaft): là một bộ phận quan trọng trong động cơ đốt trong, nó nằm trong thân động cơ và có tác dụng điều khiển mở/đóng xupap trên động cơ. Trục cam được thiết kế với các vấu cam có hình dạng và kích thước khác nhau, phù hợp với từng loại xupap trên động cơ. Khi trục cam quay, các vấu cam sẽ đẩy các cò mổ, từ đó tác động lên van và mở hoặc đóng chúng tùy thuộc vào vị trí cam. Trục cam thường được điều khiển bằng dây đai hoặc xích truyền động từ bộ phận quay của động cơ và thường được đặt ở trên đầu động cơ (overhead camshaft) hoặc ở đáy động cơ (in-block camshaft) tùy thuộc vào loại động cơ.

Ký hiệu xi lanh: Theo tiêu chuẩn ISO 1204 và DIN 6265, ký hiệu xi lanh bắt đầu từ phía truyền động. Trong động cơ chữ V, các xi-lanh ở phía bên trái, nhìn từ đầu truyền động, được gọi là A1, A2, v.v., và các xi-lanh ở khối bên phải, B1, B2, v.v.

Chiều quay của động cơ: Nó có thể là cùng chiều kim đồng hồ CW hoặc ngược chiều kim đồng hồ CCW.

Đánh Dấu bánh đà (Flywheel marks hoặc timing marks): Đây là những dấu được tạo trên bánh đà của động cơ để giúp xác định điểm chết trên cho mỗi xi lanh.

Flywheel marks thường được sử dụng để đồng bộ hoá thứ tự nổ của động cơ với đánh lửa và phun nhiên liệu. Khi điều chỉnh thứ tự nổ của động cơ, cần phải xác định vị trí của trục khuỷu tại các điểm quan trọng trên chu kỳ động cơ, bao gồm điểm đề và điểm nổ. Flywheel marks giúp xác định vị trí chính xác của trục khuỷu trong quá trình này.

Thường thì trên bánh đà có các đánh dấu để xác định các điểm quan trọng trong chu kỳ động cơ, các đánh dấu này được vẽ hoặc đánh số để dễ dàng nhận ra và sử dụng. Việc sử dụng flywheel marks là rất quan trọng trong việc điều chỉnh độ nổ của động cơ để đảm bảo hoạt động ổn định và tối ưu.

 

Chia độ trên bánh đà

Thứ tự nổ (Firing order): Thứ tự xác định chu kỳ nổ trong mỗi xi lanh của động cơ. Nó đáp ứng các đặc điểm thiết kế của động cơ và được ghi trong hướng dẫn sử dụng của mỗi nhà sản xuất.

Thứ tự nổ (Firing order) là thứ tự mà các xi lanh trong động cơ đốt trong hoạt động, nó được xác định bởi vị trí của bộ phận phân phối, ví dụ như trục cam. Thứ tự này quyết định thời điểm các xi lanh phải đốt cháy nhiên liệu và khí oxy trong động cơ. Thứ tự nổ được thể hiện dưới dạng một chuỗi số, trong đó mỗi số đại diện cho một xi lanh trong động cơ. Thông thường, các động cơ đốt trong có trình tự nổ khác nhau tùy thuộc vào số lượng và vị trí của các xi lanh trong động cơ.

Thứ tự nổ firing order của động cơ diesel 6 xy lanh

Khe hở Xupap là gì?

Khe hở của Xupap “C” đề cập đến khoảng cách giữa đỉnh của đuôi van Xupap/thanh chữ T và cò mổ tác động khi van đóng. Khe hở C giúp đủ khoảng cách cho van đóng kín và giãn nở do nhiệt khi làm việc.

Khe hở này cần được điều chỉnh định kỳ ở hầu hết các động cơ đốt trong để đảm bảo hiệu suất và độ tin cậy của động cơ.

Khe hở van có thể không chính xác do một số yếu tố, chẳng hạn như hao mòn, giãn nở nhiệt hoặc lắp đặt không đúng cách. 


Nếu khe hở này quá nhỏ: 

Van mở sớm, đóng trễ và van có thể không đóng hoàn toàn, điều này có thể dẫn đến hiệu suất động cơ kém, áp suất kỳ nén thấp, cháy xupap xả và tiếng ồn động cơ quá mức, nhiệt độ khói xả tăng, turbocharger sẽ nhanh bám muội, tiêu hao nhiên liệu tăng.

Nếu khe hở này quá lớn:

Van mở trễ đóng sớm, và van có thể không mở hoàn toàn, có tiếng gõ khi làm việc, ít năng lượng nhiệt khói thải cấp cho turbocharger. Cần dừng ngay động cơ để kiểm tra.

Điều chỉnh độ hở của xupap liên quan đến việc thiết lập độ hở theo thông số kỹ thuật của nhà sản xuất bằng cách điều chỉnh vị trí của cơ cấu đẩy xupap hoặc cò mổ. Điều này thường được thực hiện trong các khoảng thời gian bảo dưỡng động cơ định kỳ, chẳng hạn như trong quá trình điều chỉnh hoặc ở các khoảng thời gian cụ thể do nhà sản xuất khuyến nghị. Khe hở xupap được điều chỉnh phù hợp giúp đảm bảo động cơ hoạt động hiệu quả, giảm khí thải và tăng tuổi thọ động cơ.

Quy trình kiểm tra điều chỉnh

Theo thông số kỹ thuật của sách hướng dẫn sử dụng động cơ diesel, quy trình tương ứng được mô tả trong sách hướng dẫn bảo dưỡng OEM (Nhà sản xuất thiết bị gốc) tương ứng của động cơ. Trong một số trường hợp, việc sử dụng một số công cụ cụ thể cho từng nhà sản xuất sẽ được khuyến nghị, để kiểm tra hiệu chuẩn van Xupap. Ngoài ra, tài liệu tham khảo sẽ cung cấp giá trị của khe hở xupap phải được duy trì.

Như có thể thấy trong hình dưới đây và tương ứng với một ví dụ thực tế, một giá trị cụ thể được xác định, giá trị này phải đạt được với độ chính xác cao nhất có thể.


 Ví dụ về giá trị độ hở của Xupap hút 0,4mm và Xupap xả là 0,8mm.

Phương pháp điều chỉnh Xupap bằng thước nhét:

Xem Video Hướng dẫn chi tiết dưới đây có dùng đồng hồ so:


Quy trình điều chỉnh khe hở đuôi/đầu van Xupap “C”, động cơ 6 xy lanh Daihatsu bố trí kiểu thẳng hàng. Trình tự cháy xylanh 1-2-4-6-5-3

(1) Ngừng động cơ và làm nguội. Khe hở được kiểm tra khi pittong ở điểm chết trên (TDC), xi lanh ở cuối kỳ nổ, ngay trước khi bắt đầu phun nhiên liệu, đồng thời Xupap nạp và Xupap xả ở vị trí đóng. 

Có 3 cách để xác định vị trí này: Xem đánh dấu trên bánh đà và kiểm tra từ cam van nhiên liệu (đỉnh vấu cam chỉ nên cách cần đẩy van bơm nhiên liệu vài độ) hoặc dùng tay lắc thanh đẩy (push rod) phải tự do (cả hai van xupap sẽ ở vị trí đóng khi kết thúc hành trình nén).

Ở vị trí TDC của xy lanh số 6 trên bánh đà, lúc đó có 2 xy lanh 1 và 6 đều ở TDC nhưng phải kiểm tra xy lanh nào đang ở cuối kỳ nén. Khi kiểm tra cam van xupap nhiên liệu xylanh 1 thì đỉnh vấu cam đã đi ra khỏi cần đẩy van nhiên liệu. Vì vậy sẽ tiến hành kiểm tra xylanh số 6.


Xoay bánh đà, đánh dấu TDC trên bánh đà, vị trí số 6 có 2 xy lanh là 1-6

Kiểm tra từ cam van nhiên liệu (đỉnh vấu cam chỉ nên cách cần đẩy van xupap bơm nhiên liệu vài độ)

Dùng tay lắc thanh đẩy 2 van xupap phải tự do

(2) Nới lỏng đai ốc khóa (locknut) của vít điều chỉnh  để vặn vít đưa khe hở ở vị trí A và B về 0 (không có khe hở, tức sát mặt). Có thể dùng đồng hồ so để kiểm tra để chắc chắn mặt đã sát (như ảnh)


(3) Điều chỉnh khe hở C theo giá trị NSX cho (ví dụ 0.6mm). Dùng 1 thước nhét hay miếng đệm có bề dày đúng 0.6mm vào khe C, tháo đai ốc khóa C để vặn vít điều chỉnh đạt khe hở C như NSX cho. Dùng cờ lê giữ đầu lục giác đai ốc khóa của vít điều chỉnh và siết chặt đai ốc khóa, khi vặn đai ốc chú ý sao cho vít không bị trượt và xoay, di chuyển thước nhét sao cho di chuyển không quá chặt mà cũng không quá lỏng. Ở bước này bạn nên dùng đồng hồ so để kiểm tra nhằm đảm bảo chính xác và nhanh hơn nếu chỉ dùng thước nhét.

Hoàn thành đối với xy lanh 6, bạn lại xoay về TDC vị trí 5-3-1-2-4 trên bánh đà, theo trình tự cháy của máy là 1-2-4-6-5-3, để làm tương tự như xy lanh số 6.

Related Posts by Categories



Nhận xét

Bài đăng xem nhiều

Dung sai và các chế độ lắp ghép bề mặt trụ trơn [pdf]

Viết bài: Thanh Sơn, bản quyền thuộc về www.baoduongcokhi.com Ví dụ bạn cần gia công 1 trục bơm ly tâm 1 cấp, khi lên bản vẽ gia công thì cần dung sai gia công, việc chọn dung sai gia công thì căn cứ vào kiểu lắp ghép như vị trí lắp vòng bi: đối với vòng trong vòng bi với trục bơm thì sẽ lắp theo hệ thống lỗ (vì kích thước vòng bi không thay đổi được), nên việc lắp chặt hay trung gian là do bạn lựa chọn dựa trên các tiêu chí ở dưới. Còn thân bơm với vòng ngoài vòng bi thì lắp theo hệ trục (xem vòng ngoài vòng bi là trục). Bạn cũng cần lưu ý việc lắp chặt hay trung gian có thể ảnh hưởng đến khe hở vòng bi khi làm việc nên cần cân nhắc cho phù hợp với điều kiện vận hành, loại vòng bi (cùng loại vòng bi, vòng bi C2, C3 có khe hở nhỏ hơn C4, C4 nhỏ hơn C5). Nếu bạn đang dùng C3, lắp trung gian mà chuyển sang lắp chặt có thể làm giảm tuổi thọ vòng bi vì khe hở giảm hoặc không đáp ứng yêu cầu làm việc. Sơ đồ miền dung sai Miền dung sai Miền dung sai được tạo ra bằng cách phối hợp giữa  1...

Tải miễn phí phần mềm triển khai hình gò

Phần mềm này sẽ giúp các bạn đưa ra bản vẽ triển khai gia công đầy đủ và chính xác, cho phép các bạn xuất ra bản vẽ Autocad để tiện hơn cho việc tính toán, in ấn , quản lý. [MF] —–  nhấn chọn để download Lưu ý: sau khi giải nén và cài đặt thì chép pns4.exe (có sẵn sau khi giải nén) đè lên file pns4.exe mới. Phiên bản này có đầy đủ kích thước với các kiểu ống và help. Nên chạy run as administrator trong win 7. Xin chào bạn!  Nếu bạn đang thích trang web của chúng tôi và thấy các bài viết của chúng tôi hữu ích, chúng tôi rất mong nhận được sự ủng hộ của bạn. Với sự giúp đỡ của bạn, chúng tôi có thể tiếp tục phát triển tài nguyên và cung cấp cho bạn nội dung có giá trị hơn nữa.  Cảm ơn bạn đã ủng hộ chúng tôi. Nguyễn Thanh Sơn

Tải giáo trình chuyên nghành cơ khí [pdf]

Danh mục sách chuyên nghành cơ khí do chúng tôi tìm kiếm sưu tầm trên internet, đường link google drive có sẵn (pdf).  Nếu có điều kiện các bạn nên mua sách để ủng hộ tác giả và NXB nhé! Link tải giáo trình vẫn đang tiếp tục được cập nhật hàng ngày...... Ngày cập nhật: 13/6/2023 -------------------------------------------------------------- Sổ tay thiết kế cơ khí - Tập 1 - PGS Hà Văn Vui, TS. Nguyễn Chỉ Sáng, TH.S. Phan Đăng Phong NXB Khoa học và Kỹ thuật (2006) Số trang: 734 ==>  Tải tại đây -------------------------------------------------------------- Sổ tay thiết kế cơ khí - Tập 2 - PGS Hà Văn Vui, TS. Nguyễn Chỉ Sáng NXB Khoa học và Kỹ thuật (2004) Số trang: 601 ==>  Tải tại đây -------------------------------------------------------------- Sổ tay thiết kế cơ khí - Tập 3 - PGS Hà Văn Vui, TS. Nguyễn Chỉ Sáng NXB Khoa học và Kỹ thuật (2006) Số trang: 653 ==>  Tải tại đây -------------------------------------------------------------- Sổ tay thiết kế cơ ...

Khe hở mặt răng (backlash) và khe hở chân/đỉnh răng (root/tip clearance)

Viết bài : Nguyễn Thanh Sơn, bản quyền thuộc về www.baoduongcokhi.com Các thông số cơ bản của bánh răng Về những thông số của bánh răng, có rất nhiều thông số để phục vụ cho quá trình gia công, thiết kế và lắp đặt máy. Tuy nhiên có một số thông số cơ bản bắt buộc người chế tạo cần phải nắm rõ, gồm: Đường kính Vòng đỉnh (Tip diameter): là đường tròn đi qua đỉnh răng, da = m (z+2) . Đường kính Vòng đáy (Root diameter): là vòng tròn đi qua đáy răng, df = m (z-2.5) . Đường kính Vòng chia (Reference diameter): là đường tròn tiếp xúc với một đường tròn tương ứng của bánh răng khác khi 2 bánh ăn khớp với nhau, d = m.Z   Số răng: Z=d/m Bước răng (Circular Pitch): là độ dài cung giữa 2 profin của 2 răng kề nhau đo trên vòng chia, P=m. π Modun: là thông số quan trọng nhất của bánh răng, m = P/π ; ha=m. Chiều cao răng (whole depth): là khoảng cách hướng tâm giữa vòng đỉnh và vòng chia; h=ha + hf=2.25m, trong đó ha=1 m, hf=1,25 Chiều dày răn...

Phương pháp kiểm tra hạt từ (Magnetic Particle Testing)

Viết bài: Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com Kiểm tra hạt từ (Magnetic Particle Testing MPT/MT hay Magnetic Particle Inspection - MPI) là một phương pháp kiểm tra không phá hủy nhằm phát hiện các khuyết tật trên bề mặt hoặc ngay bên dưới bề mặt kim loại. Đây là kỹ thuật nhanh và đáng tin cậy để phát hiện và định vị các vết nứt bề mặt. Nguyên lý MPT: Từ thông rò trên bề mặt không liên tục Nguyên lý Kiểm tra hạt từ (MT) dựa trên tính chất từ tính của vật liệu sắt từ. Khi một thành phần sắt từ bị từ hóa (được thực hiện bằng cách cho dòng điện chạy qua nó hoặc bằng cách đặt nó trong một từ trường mạnh), bất kỳ sự không liên tục hoặc khuyết tật nào có trong vật liệu sẽ gây ra rò rỉ từ thông (như vết nứt  sẽ tạo ra lực cản đáng kể đối với từ trường, tại những điểm không liên tục như vậy, từ trường thoát ra trên bề mặt của mẫu thử (từ thông rò rỉ). Xem thêm:  Kiểm tra thẩm thấu PT (Penetrant Testing) Kiểm tra siêu âm bên trong lòng ống ILI là gì? Rò rỉ từ thông...

Tại sao đường kính ống hút thường lớn hơn đường kính ống xả của bơm ly tâm?

Trong hệ thống bơm ly tâm (centrifugal pump system), việc thiết kế và lựa chọn kích thước đường ống hút và đường ống xả không phải là ngẫu nhiên mà dựa trên cơ sở tính toán thủy lực nhằm đảm bảo hiệu quả vận hành, độ tin cậy và tuổi thọ thiết bị. Một điểm dễ thấy là trong nhiều hệ thống, đường kính ống hút thường lớn hơn đường kính ống xả. Điều này xuất phát từ các yêu cầu kỹ thuật liên quan đến kiểm soát tổn thất áp suất, chống xâm thực (cavitation) và đảm bảo điều kiện thủy lực tối ưu cho bơm. Sau đây là phân tích chi tiết: 1. Hiểu rõ nguyên lý hoạt động của bơm ly tâm Bơm ly tâm hoạt động dựa trên nguyên lý chuyển đổi năng lượng cơ học từ bánh công tác (impeller) thành động năng và áp năng của dòng chất lỏng. Chất lỏng được hút vào bơm qua cửa hút (suction inlet), tại đây bánh công tác gia tốc dòng chảy, sau đó chất lỏng được đẩy ra ngoài qua cửa xả (discharge outlet) với áp suất và vận tốc cao hơn. Lưu ý: Áp suất tại cửa hút luôn thấp hơn áp suấ...

Cách kiểm tra và đánh giá vết ăn khớp (tooth contact) của cặp bánh răng

Viết bài: Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com Hộp số với cặp bánh răng nghiêng Tooth contact là một trong những yếu tố quan trọng trong việc đảm bảo hoạt động hiệu quả và độ bền của bánh răng Mục đích Các bánh răng phải có tải trọng phân bố đều trên bề mặt răng khi làm việc ở điều kiện danh định.  Nếu tải trọng phân bố không đều, áp lực tiếp xúc và ứng suất uốn tăng cục bộ , làm tăng nguy cơ hư hỏng.  Gear Run Out của bánh răng là gì? cách kiểm tra Bánh răng và hộp số, phần 3: Phân tích dầu tìm nguyên nhân hư hỏng bánh răng. Bánh răng và Hộp số, phần 2: Các loại hộp số, bôi trơn, hư hỏng thường gặp Bánh răng và hộp số, phần 1: Các loại bánh răng (types of gears) Để đạt được sự phân bố tải đều, bánh răng cần có độ chính xác trong thiết kế, sản xuất, lắp ráp và lắp đặt các bộ phận của hộp số. Các yếu tố này được kiểm tra, test thử nghiệm và kiểm tra tại xưởng của nhà sản xuất thiết bị. Lắp đặt đúng cách tại hiện trường là bước cuối cùng để ...

Kỹ thuật hàn Temper Bead

Biên soạn Nguyễn Thanh Sơn , bản quyền thuộc baoduongcokhi.com Hàn temper bead là một kỹ thuật hàn đặc biệt, trong đó nhiệt lượng (heat input) từ các lớp hàn kế tiếp sẽ làm tôi (temper) các lớp hàn trước đó. Kết quả là cấu trúc hạt mịn (fine grain structure) và độ cứng thấp được hình thành trong vùng ảnh hưởng nhiệt (Heat-Affected Zone – HAZ). Đây là phương pháp rất hữu ích trong việc kiểm soát luyện kim vùng HAZ mà không cần xử lý nhiệt sau hàn (Post-Weld Heat Treatment – PWHT).  Kỹ thuật này thường được áp dụng trong các tình huống mà PWHT không thể thực hiện được vì lý do kỹ thuật hoặc kinh tế — chẳng hạn như khi thực hiện sửa chữa tại chỗ trong các nhà máy đang vận hành. Trong những trường hợp như vậy, hàn temper bead cho phép đạt được các đặc tính cơ học chấp nhận được cho mối hàn và kiểm soát kích thước HAZ ở mức tối thiểu. 1. Định nghĩa và cơ sở luyện kim Temper Bead Welding (TBW) là phương pháp hàn nhiều lớp (multi-pass welding) được bố trí theo trình tự cụ thể, trong đó...

Bẫy hơi (steam trap) trong nhà máy công nghiệp

1. Tại sao cần bẫy hơi (Steam Trap)? Trong hệ thống hơi nước công nghiệp (industrial steam system), khi hơi được sử dụng để gia nhiệt, truyền nhiệt hoặc vận hành thiết bị, một phần hơi luôn ngưng tụ thành nước (condensate) do: Hơi trao đổi nhiệt cho quá trình. Mất nhiệt qua thành ống, van, thiết bị. Sự xâm nhập của không khí và khí không ngưng tụ (non-condensable gases) như CO₂, O₂. Nếu không loại bỏ kịp thời nước ngưng tụ và khí không ngưng, sẽ xảy ra: Tụ đọng nước làm giảm hiệu suất trao đổi nhiệt.   Hiện tượng búa nước (water hammer) gây nứt vỡ ống, hỏng thiết bị.   Ăn mòn cục bộ do kết hợp với oxy, CO₂. Rò rỉ hơi (live steam loss), thất thoát năng lượng. Sản phẩm không đạt yêu cầu, gián đoạn sản xuất. Bẫy hơi (steam trap) là thiết bị tự động xả nước ngưng và khí không ngưng, ngăn thất thoát hơi, bảo vệ thiết bị và đảm bảo hiệu suất nhiệt toàn hệ thống. 2. Định nghĩa và Vai trò của Bẫy Hơi Theo tiêu chuẩn ISO 6704:1982, steam tra...

Bảo quản rotor dự phòng trong nhà máy

Tổng hợp: Nguyễn Thanh Sơn, bản quyền thuộc về www.baoduongcokhi.com Tham khảo:  https://core.ac.uk/reader/87265860 ;  rotatingmachinery.com georgegreen-uk.com machinerylubrication.com machinerylubrication.com rotatingmachinery.com theramreview.com Bảo quản rotor tuabin hơi trong tùng chứa Bảo quản  rotor máy nén khí dọc trục trong thùng chứa Thiết bị quay công nghiệp như tua-bin hơi, máy nén ly tâm, máy nén piston hay động cơ lớn đều là những tài sản quan trọng, được thiết kế chính xác và có giá trị cao. Các rotọr dự phòng được chuẩn bị để thay thế kịp thời khi cần và đảm bảo không làm gián đoạn vận hành của nhà máy. Tuy nhiên, nếu lưu giữ không đúng cách, bề mặt thép của rotọr sẽ dễ bị ôxy hóa và ăn mòn do hơi nước, muối và bụi bặm trong không khí. Ví dụ, các thành phần như trục, đĩa tua-bin, cánh quạt máy nén hay cổ chịu lực đều có thể hư hại nếu để ngoài trời ẩm ướt mà không có biện pháp bảo vệ. Vì vậy, bảo quản rotọr đúng quy trình là cực kỳ quan trọng để phòng ...