Chuyển đến nội dung chính

Thép không gỉ chịu nhiệt - Grades 310, 310S, UNS-S31000, S31008

Bulong bằng thép không gỉ chịu nhiệt Loại 310, 310S 

Tổng quan

Loại 310, kết hợp các đặc tính nhiệt độ cao tuyệt vời với độ dẻo và khả năng hàn tốt, được thiết kế cho các ứng dụng nhiệt độ cao. 
Nó chống lại quá trình oxy hóa khi hoạt động liên tục ở nhiệt độ lên đến 1150°C với điều kiện không có khí khử lưu huỳnh. 
Nó cũng được sử dụng cho ứng dụng vận hành không liên tục ở nhiệt độ lên đến 1040°C.
Loại 310S (UNS S31008) được sử dụng khi môi trường ứng dụng liên quan đến chất ăn mòn ẩm trong phạm vi nhiệt độ thấp hơn nhiệt độ các ứng dụng "nhiệt độ cao" nói ở trên. Hàm lượng carbon thấp hơn của 310S làm giảm độ bền ở nhiệt độ cao của nó so với 310.
Giống như các loại thép không gỉ Austenit khác, các loại trên có độ dẻo dai tuyệt vời, thậm chí khi ở nhiệt độ lạnh, mặc dù các loại Austenit khác thường được sử dụng trong môi trường này.
Loại 310L, là thép 310 có hàm lượng cacbon tối đa 0,03%, đôi khi được sử dụng cho các môi trường ăn mòn rất cụ thể, chẳng hạn như ở nhà máy sản xuất urê.

Các đặc tính chính

Các đặc tính này được quy định cho sản phẩm cán phẳng như tấm (plate), lá (sheet) và cuộn (roll) trong tiêu chuẩn ASTM A240 / A240M. 
Các đặc tính cũng tương tự nhưng không giống hệt nhau, được chỉ định cho các sản phẩm khác như ống (pipe) và thanh (bar) trong thông số kỹ thuật tương ứng của chúng.

Thành phần

Giới hạn thành phần nguyên tố hóa học điển hình cho thép không gỉ loại 310 được đưa ra trong bảng 1.
Bảng 1. Phạm vi thành phần cho thép không gỉ 310 
Grade
C
Mn
Si
P
NS
Cr
Mo
Ni
N
310
tối thiểu
tối đa
-
0.25
-
2.00
-
1.50
-
0.045
-
0.030
24.0
26.0
-
19.0
22.0
-
310S
tối thiểu
tối đa
-
0.08
-
2.00
-
1.50
-
0.045
-
0.030
24.0
26.0
-
19.0
22.0
-

Tính chất cơ học

Các tính chất cơ học điển hình cho thép không gỉ loại 310 được cho trong bảng 2.
Bảng 2. Tính chất cơ học của thép không gỉ loại 310
Loại
Độ bền kéo (MPa) phút
Độ bền chảy 0,2% Proof (MPa) tối thiểu
Độ giãn dài (% trong 50mm) tối thiểu
Độ cứng
Rockwell B (HR B) tối đa
Brinell (HB)
tối đa
310
515
205
40
95
217
310S
515
205
40
95
217

Tính chất vật lý

Các tính chất vật lý điển hình cho thép không gỉ loại 310 được ủ được đưa ra trong bảng 3.
Bảng 3. Tính chất vật lý của thép không gỉ loại 310 ở điều kiện ủ
Grades
Tỉ trọng (kg / m 3 )
Mô đun đàn hồi (GPa)
Hệ số giãn nở nhiệt trung bình ( m / m / ° C)
Độ dẫn nhiệt (W / mK)
Nhiệt riêng 0-100 ° C (J / kg.K)
Điện trở suất (n .m)
0-100°C
0-315°C
0-538°C
ở 100 ° C
ở 500 ° C
310 / S
7750
200
15.9
16.2
17.0
14.2
18.7
500
720

Các loại (Grades) tương đương

So sánh loại gần tương đương cho 310 thép không gỉ được đưa ra trong bảng 4.
Bảng 4. Các loại thép không gỉ tương đương loại 310
Grade
 UNS
Old British
Euronorm
SS Thụy Điển
JIS Nhật Bản
BS
En
No
Name
310
S31000
310S24
-
1.4840
X15CrNi25-20
-
SUH 310
310S
S31008
310S16
-
1.4845
X8CrNi25-21
2361
SUS 310S
Những so sánh này chỉ là gần đúng. Danh sách này nhằm mục đích so sánh các vật liệu tương tự về chức năng chứ không phải là danh sách các vật liệu tương đương theo hợp đồng. Nếu cần các loại tương đương chính xác thì phải tham khảo các thông số kỹ thuật ban đầu.

Các loại có thể thay thế cho 310

Các loại có thể thay thế cho thép không gỉ loại 310 được đưa ra trong bảng 5.
Bảng 5. Các loại có thể thay thế cho thép không gỉ 310 
Loại
Tại sao nó có thể được chọn thay vì 310
3CR12
Khả năng chịu nhiệt là cần thiết, nhưng chỉ ở khoảng 600°C.
304H
Khả năng chịu nhiệt là cần thiết, nhưng chỉ ở khoảng 800°C.
321
Khả năng chịu nhiệt là cần thiết, nhưng chỉ ở khoảng 900°C Khả năng chống ăn mòn dung dịch với nước cũng được yêu cầu.
253MA (2111HTR)
Cần có khả năng chịu nhiệt độ cao hơn một chút so với mức có thể được cung cấp bởi 310. Cần có khả năng chống giảm sunfua trong khí quyển tốt hơn. Cần có khả năng miễn nhiễm cao hơn khỏi sự nhúng pha sigma.

Chống ăn mòn

Hàm lượng crom cao - nhằm tăng tính chất ở nhiệt độ cao - cũng mang lại cho các loại này khả năng chống ăn mòn trong nước tốt. PRE là khoảng 25 và khả năng chịu nước biển khoảng 22°C, tương tự như của loại 316. Khả năng chống chịu tuyệt vời ở nhiệt độ bình thường và khi hoạt động ở nhiệt độ cao thể hiện khả năng chống ôxy hóa và ôxy hóa tốt trong khí quyển. Chống lại axit nitric bốc khói ở nhiệt độ phòng và nitrat nóng chảy lên đến 425°C.
Chịu được sự ăn mòn do ứng suất làm nứt nhưng có khả năng chống chịu cao hơn loại 304 hoặc 316.

Khả năng chịu nhiệt

Khả năng chống oxy hóa tốt khi làm việc không liên tục trong không khí ở nhiệt độ lên đến 1040°C và 1150°C khi hoạt động liên tục. Khả năng chống mỏi nhiệt và gia nhiệt theo chu kỳ là tốt. 
Được sử dụng rộng rãi khi tiếp xúc với khí lưu huỳnh đioxit (SO2) ở nhiệt độ cao. Không nên sử dụng liên tục trong khoảng 425-860°C do sự hình thành cacbua, nhưng thường hoạt động tốt trong điều kiện nhiệt độ dao động ở trên và dưới khoảng nhiệt độ này.
Loại 310 thường được sử dụng ở nhiệt độ bắt đầu từ khoảng 800 hoặc 900°C - cao hơn nhiệt độ mà 304H và 321 có hiệu quả.

Nhiệt luyện

Nhiệt luyện (Ủ) - gia nhiệt đến 1040-1150°C và làm nguội nhanh chóng để chống ăn mòn tối đa. Xử lý này cũng được khuyến nghị để khôi phục độ dẻo sau mỗi 1000 giờ sử dụng trên 650°C, do sự kết tủa lâu dài của pha sigma giòn.
Những loại thép 310 này không thể tôi cứng bằng cách nhiệt luyện.

Tính Hàn

Các đặc tính tốt phù hợp với tất cả các phương pháp tiêu chuẩn. Que hàn loại 310S thường được khuyên dùng cho hàn nóng chảy. AS 1554.6 đủ điều kiện hàn 310 với que hàn hoặc điện cực hàn loại 310 .

Các ứng dụng

Các ứng dụng điển hình bao gồm:
· Bộ phận lò đốt
· Đầu đốt dầu
· Thùng đốt rác
· Thùng/lò xử lý nhiệt
· Bộ trao đổi nhiệt
· Hàn dây và điện cực

Related Posts by Categories



Nhận xét

Bài đăng xem nhiều

Dung sai và các chế độ lắp ghép bề mặt trụ trơn [pdf]

Viết bài: Thanh Sơn, bản quyền thuộc về www.baoduongcokhi.com Ví dụ bạn cần gia công 1 trục bơm ly tâm 1 cấp, khi lên bản vẽ gia công thì cần dung sai gia công, việc chọn dung sai gia công thì căn cứ vào kiểu lắp ghép như vị trí lắp vòng bi: đối với vòng trong vòng bi với trục bơm thì sẽ lắp theo hệ thống lỗ (vì kích thước vòng bi không thay đổi được), nên việc lắp chặt hay trung gian là do bạn lựa chọn dựa trên các tiêu chí ở dưới. Còn thân bơm với vòng ngoài vòng bi thì lắp theo hệ trục (xem vòng ngoài vòng bi là trục). Bạn cũng cần lưu ý việc lắp chặt hay trung gian có thể ảnh hưởng đến khe hở vòng bi khi làm việc nên cần cân nhắc cho phù hợp với điều kiện vận hành, loại vòng bi (cùng loại vòng bi, vòng bi C2, C3 có khe hở nhỏ hơn C4, C4 nhỏ hơn C5). Nếu bạn đang dùng C3, lắp trung gian mà chuyển sang lắp chặt có thể làm giảm tuổi thọ vòng bi vì khe hở giảm hoặc không đáp ứng yêu cầu làm việc. Sơ đồ miền dung sai Miền dung sai Miền dung sai được tạo ra bằng cách phối hợp giữa  1 sai

Bảo trì năng suất toàn diện (Total Productive Maintenance)

Toàn bộ file điện tử powerpoint này: TPM P-1.ppt 1382K TPM P-2.ppt 336K TPM P-3.ppt 2697K Link download http://www.mediafire.com/?upl33otz5orx0e1

Cách kiểm tra và đánh giá vết ăn khớp (tooth contact) của cặp bánh răng

Viết bài: Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com Hộp số với cặp bánh răng nghiêng Tooth contact là một trong những yếu tố quan trọng trong việc đảm bảo hoạt động hiệu quả và độ bền của bánh răng Mục đích Các bánh răng phải có tải trọng phân bố đều trên bề mặt răng khi làm việc ở điều kiện danh định.  Nếu tải trọng phân bố không đều, áp lực tiếp xúc và ứng suất uốn tăng cục bộ , làm tăng nguy cơ hư hỏng.  Gear Run Out của bánh răng là gì? cách kiểm tra Bánh răng và hộp số, phần 3: Phân tích dầu tìm nguyên nhân hư hỏng bánh răng. Bánh răng và Hộp số, phần 2: Các loại hộp số, bôi trơn, hư hỏng thường gặp Bánh răng và hộp số, phần 1: Các loại bánh răng (types of gears) Để đạt được sự phân bố tải đều, bánh răng cần có độ chính xác trong thiết kế, sản xuất, lắp ráp và lắp đặt các bộ phận của hộp số. Các yếu tố này được kiểm tra, test thử nghiệm và kiểm tra tại xưởng của nhà sản xuất thiết bị. Lắp đặt đúng cách tại hiện trường là bước cuối cùng để đảm bảo khả năng ti

Giới thiệu về Tua bin khí (Gas Turbine)

Turbine khí, còn được gọi là tuốc bin khí  (Gas Turbine) , là một loại động cơ nhiệt được sử dụng để chuyển đổi nhiệt năng thành năng lượng cơ học thông qua quá trình đốt cháy khí và chuyển động quay turbine. Một máy phát điện Generator kéo bởi một tuốc bin khí. Đây là tổ hợp của máy nén khí + tuốc bin khí + máy phát điện. Không khí được hút vào và nén lên áp suất cao nhờ một máy nén. Nhiên liệu cùng với không khí này sẽ được đưa vào buồng đốt để đốt cháy. Khí cháy sau khi ra khỏi buồng đốt sẽ được đưa vào quay turbine. Vì thế nên mới gọi là turbine khí. Năng lượng cơ học của turbine một phần sẽ được đưa về quay máy nén, một phần khác đưa ra quay tải ngoài, như cách quạt, máy phát điện... Đa số các turbine khí có một trục, một đầu là máy nén, một đầu là turbine. Đầu phía turbine sẽ được nối với máy phát điện trực tiếp hoặc qua bộ giảm tốc. Riêng mẫu turbine khí dưới đây có 3 trục. Trục hạ áp gồm máy nén hạ áp và turbine hạ áp. Trục cao áp gồm máy nén cao áp và turbine cao áp. Trục th

Chọn vật liệu chế tạo bánh răng và xử lý nhiệt

Viết bài: Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com Điều cần thiết là chọn vật liệu và xử lý nhiệt thích hợp phù hợp với ứng dụng dự kiến ​​của bánh răng. Vì các bánh răng được ứng dụng cho nhiều mục đích sử dụng khác nhau, chẳng hạn như máy móc công nghiệp, thiết bị điện/điện tử, đồ gia dụng và đồ chơi, và bao gồm nhiều loại vật liệu, nên chúng tôi muốn giới thiệu các vật liệu điển hình và phương pháp xử lý nhiệt của chúng. Hộp số 1. Các loại vật liệu chế tạo bánh răng a) S45C (Thép cacbon dùng cho kết cấu máy): S45C là một trong những loại thép được sử dụng phổ biến nhất, chứa lượng carbon vừa phải ( 0,45% ). S45C dễ kiếm được và được sử dụng trong sản xuất bánh răng trụ thẳng, bánh răng xoắn, thanh răng, bánh răng côn và bánh răng trục vít bánh vít . Xử lý nhiệt và độ cứng đạt được: nhiệt luyện độ cứng Không < 194HB Nhiệt luyện bằng cách nung nóng, làm nguội nhanh (dầu hoặc nước) và ram thép, còn gọi là quá trìnhT

Sơ đồ tuabin khí chu trình hỗn hợp (combined cycle)

Viết bài KS Nguyễn Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com CCGT được gọi là chu trình kết hợp trong nhà máy điện, có sự tồn tại đồng thời của hai chu trình nhiệt trong một hệ thống, trong đó một lưu chất làm việc là hơi nước và một lưu chất làm việc khác là một sản phẩm khí đốt. Giải thích rõ hơn: Turbine khí chu trình hỗn hợp (Combined Cycle Gas Turbine - CCGT) là một hệ thống phát điện sử dụng cùng một nguồn nhiên liệu để vận hành hai loại máy phát điện khác nhau: một máy phát điện dẫn động bởi tuabin khí (gas turbine) và một máy phát điện dẫn động bởi tuabin hơi nước (steam turbine). Hệ thống CCGT được sử dụng rộng rãi trong các nhà máy điện, do có thể giảm thiểu lượng khí thải và tăng tính hiệu quả trong việc sử dụng năng lượng. Nhà máy điện CCGT Trong hệ thống CCGT, nguồn nhiên liệu (thường là khí tự nhiên natural gas hoặc dầu) được đốt trong máy tuabin khí dẫn động cho máy phát điện generator để sản xuất điện. Hơi nước được tạo ra từ lò hơi thu hồi nhiệt (Heat Recove

Một số thiết bị chưng cất

Ngày nay cùng với sự phát triển vượt bậc của nền công nghiệp thế giới và nước nhà, các ngành công nghiệp cần rất nhiều hoá chất có độ tinh khiết cao. Chưng cất  ( distillation ) là quá trình dùng nhiệt để tách một hỗn hợp lỏng ra thành các cấu tử riêng biệt dựa vào độ bay hơi khác nhau của các cấu tử trong hỗn hợp ở cùng một nhiệt đo. Chưng cất = Gia nhiệt + Ngưng tụ Ta có thể phân biệt chưng cất ra thành quy trình một lần như trong phòng thí nghiệm để tách một hóa chất tinh khiết ra khỏi một hỗn hợp, và chưng cất liên tục, như trong các tháp chưng cất trong công nghiệp.  Xem kênh Youtube của Bảo Dưỡng Cơ Khí!  Hãy đăng ký kênh để nhận thông báo video mới nhất về Thiết bị chưng cất  Trong nhiều trường hợp có một tỷ lệ nhất định của hỗn hợp hai chất lỏng mà không thể tiếp tục tách bằng phương pháp chưng cất được nữa. Các hỗn hợp này được gọi là hỗn hợp đẳng phí. Nếu muốn tăng nồng độ của cồn phải dùng đến các phương pháp tinh cất đặc biệt khác. Có thể sử dụng các loại tháp chưng cất

Khe hở mặt răng (backlash) và khe hở chân/đỉnh răng (root/tip clearance)

Viết bài : Nguyễn Thanh Sơn, bản quyền thuộc về www.baoduongcokhi.com Các thông số cơ bản của bánh răng Về những thông số của bánh răng, có rất nhiều thông số để phục vụ cho quá trình gia công, thiết kế và lắp đặt máy. Tuy nhiên có một số thông số cơ bản bắt buộc người chế tạo cần phải nắm rõ, gồm: Đường kính Vòng đỉnh (Tip diameter): là đường tròn đi qua đỉnh răng, da = m (z+2) . Đường kính Vòng đáy (Root diameter): là vòng tròn đi qua đáy răng, df = m (z-2.5) . Đường kính Vòng chia (Reference diameter): là đường tròn tiếp xúc với một đường tròn tương ứng của bánh răng khác khi 2 bánh ăn khớp với nhau, d = m.Z   Số răng: Z=d/m Bước răng (Circular Pitch): là độ dài cung giữa 2 profin của 2 răng kề nhau đo trên vòng chia, P=m. π Modun: là thông số quan trọng nhất của bánh răng, m = P/π ; ha=m. Chiều cao răng (whole depth): là khoảng cách hướng tâm giữa vòng đỉnh và vòng chia; h=ha + hf=2.25m, trong đó ha=1 m, hf=1,25 Chiều dày răng (w

CÔNG NGHỆ GIA CÔNG VẬT LIỆU BẰNG DÒNG HẠT MÀI

Gia công dòng hạt mài (Abrasive Jet Machining - AJM)   1. Nguyên lý gia công :                                                   Hình 1: Nguyên lý gia công dòng hạt mài.  Gia công dòng hạt mài là phương pháp bóc vật liệu khi dòng khí khô mang hạt mài với vận tốc cao tác động lên chi tiết. Sự va đập của các phần tử hạt mài vào bề mặt chi tiết gia công tạo thành một lực tập trung đủ lớn, gây nên một vết nứt nhỏ, và dòng khí mang cả hạt mài và mẩu vật liệu nứt (mòn) đi ra xa. Phương pháp này rất thuận lợi để gia công các loại vật liệu giòn, dễ vỡ. Khí bao gồm nhiều loại như không khí, CO2, nitơ, heli,…  Khí sử dụng có áp suất từ 0,2 - 1,4 MPa, dòng khí có hạt mài có vận tốc lên đến 300m/s và được điều khiển bởi một van. Quá trình thường được thực hiện bởi một công nhân điều khiển vòi phun hướng dòng hạt mài chi tiết.  Xem kênh Youtube của Bảo Dưỡng Cơ Khí!  Hãy đăng ký kênh để nhận thông báo video mới nhất về Công nghệ gia công kim loại 2. Thiết bị và dụng cụ :  a. Máy:   Hình 2: Sơ đồ củ

Các dạng và nguyên nhân hư hỏng thường gặp trong bộ truyền bánh răng trụ

Dạng hư hỏng Nguyên nhân Tróc bề mặt làm việc của răng - Vật liệu làm bánh răng bị mỏi vì làm việc lâu với tải trọng lớn. - Bề mặt làm việc của bánh răng bị quá tải cục bộ - Không đủ dầu bôi trơn hay bôi trơn không đủ nhớt Xước bề mặt làm việc của răng - Răng làm việc trong điều kiện ma sát khô. Răng mòn quá nhanh - Có bùn, bụi, hạt mài hoặc mạt sắt lọt vào giữa hai mặt răng ăn khớp Gãy răng - Răng bị quá tải hoặc bị vấp vào vật lạ Bộ truyền làm việc quá ồn kèm theo va đập - Khoảng cách trục xa quá dung sai qui định - Khe hở cạnh răng quá lớn Bộ truyền bị kẹt và quá nóng - Khoảng cách trục gần quá dung sai qui định - Khe hở cạnh răng quá nhỏ SCCK.TK

Nghe Podcast Bảo Dưỡng Cơ Khí